327 research outputs found

    Experimental and theoretical investigation of ligand effects on the synthesis of ZnO nanoparticles

    Get PDF
    ZnO nanoparticles with highly controllable particle sizes(less than 10 nm) were synthesized using organic capping ligands in Zn(Ac)2 ethanolic solution. The molecular structure of the ligands was found to have significant influence on the particle size. The multi-functional molecule tris(hydroxymethyl)-aminomethane (THMA) favoured smaller particle distributions compared with ligands possessing long hydrocarbon chains that are more frequently employed. The adsorption of capping ligands on ZnnOn crystal nuclei (where n = 4 or 18 molecular clusters of(0001) ZnO surfaces) was modelled by ab initio methods at the density functional theory (DFT) level. For the molecules examined, chemisorption proceeded via the formation of Zn...O, Zn...N, or Zn...S chemical bonds between the ligands and active Zn2+ sites on ZnO surfaces. The DFT results indicated that THMA binds more strongly to the ZnO surface than other ligands, suggesting that this molecule is very effective at stabilizing ZnO nanoparticle surfaces. This study, therefore, provides new insight into the correlation between the molecular structure of capping ligands and the morphology of metal oxide nanostructures formed in their presence

    Recent advances in electronic structure theory and their influence on the accuracy of ab initio potential energy surfaces

    Get PDF
    Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F+H2 yields HF+H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces

    Tuning the electrical conductance of metalloporphyrin supramolecular wires

    Get PDF
    In contrast with conventional single-molecule junctions, in which the current flows parallel to the long axis or plane of a molecule, we investigate the transport properties of M(II)-5,15-diphenylporphyrin (M-DPP) single-molecule junctions (M=Co, Ni, Cu, or Zn divalent metal ions), in which the current flows perpendicular to the plane of the porphyrin. Novel STM-based conductance measurements combined with quantum transport calculations demonstrate that current-perpendicular-to-the-plane (CPP) junctions have three-orders-of-magnitude higher electrical conductanc than their current in-plane (CIP) counterparts, ranging from 2.10−2 G0 for Ni-DPP up to 8.10−2 G0 for Zn-DPP. The metal ion in the center of the DPP skeletons is strongly coordinated with the nitrogens of the pyridyl coated electrodes, with a binding energy that is sensitive to the choice of metal ion. We find that the binding energies of Zn-DPP and Co-DPP are significantly higher than those of Ni-DPP and Cu-DPP. Therefore when combined with its higher conductance, we identify Zn-DPP as the favoured candidate for high conductance CPP single-molecule devices

    Understanding the decomposition reaction mechanism of chrysanthemic acid: a computational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chrysanthemic acid (<b>CHA</b>) is a major product from the photodecomposition of pyrethrin which is an important class of pesticide compounds.</p> <p>In the following paper, Hybrid density functional theory (DFT) calculations of the potential energy surface (PES) for three possible channels decomposition of chrysanthemic acid <b>(</b>cis-trans isomerization, rearrangement and fragmentation) have been carried at the B3LYP/6-311+G** level of theory. DFT was employed to optimize the geometry parameters of the reactants, transition states, intermediates and products based on detailed potential energy surfaces (PES).</p> <p>Results</p> <p>Our results suggest that all three pathways of <b>CHA </b>are endothermic. DFT calculations revealed that the activation barriers for cis-trans isomerization are low, leading to a thermodynamically favorable process than other two pathways. We also investigated the solvent effect on the PES using the polarizable continuum model (PCM). In addition, time-dependent density functional theory (TDDFT) calculations showed that these reactions occur in the ground state rather than in an excited state.</p> <p>Conclusion</p> <p>The rearrangement process seems to be more favorable than the decomposition of <b>CHA </b>to carbene formation. The solvent effect calculations indicated no changes in the shape of the PES with three continua (water, ethanol and cyclohexane), although the solvents tend to stabilize all of the species.</p

    A mathematical and computational review of Hartree-Fock SCF methods in Quantum Chemistry

    Get PDF
    We present here a review of the fundamental topics of Hartree-Fock theory in Quantum Chemistry. From the molecular Hamiltonian, using and discussing the Born-Oppenheimer approximation, we arrive to the Hartree and Hartree-Fock equations for the electronic problem. Special emphasis is placed in the most relevant mathematical aspects of the theoretical derivation of the final equations, as well as in the results regarding the existence and uniqueness of their solutions. All Hartree-Fock versions with different spin restrictions are systematically extracted from the general case, thus providing a unifying framework. Then, the discretization of the one-electron orbitals space is reviewed and the Roothaan-Hall formalism introduced. This leads to a exposition of the basic underlying concepts related to the construction and selection of Gaussian basis sets, focusing in algorithmic efficiency issues. Finally, we close the review with a section in which the most relevant modern developments (specially those related to the design of linear-scaling methods) are commented and linked to the issues discussed. The whole work is intentionally introductory and rather self-contained, so that it may be useful for non experts that aim to use quantum chemical methods in interdisciplinary applications. Moreover, much material that is found scattered in the literature has been put together here to facilitate comprehension and to serve as a handy reference.Comment: 64 pages, 3 figures, tMPH2e.cls style file, doublesp, mathbbol and subeqn package

    Random-phase approximation and its applications in computational chemistry and materials science

    Full text link
    The random-phase approximation (RPA) as an approach for computing the electronic correlation energy is reviewed. After a brief account of its basic concept and historical development, the paper is devoted to the theoretical formulations of RPA, and its applications to realistic systems. With several illustrating applications, we discuss the implications of RPA for computational chemistry and materials science. The computational cost of RPA is also addressed which is critical for its widespread use in future applications. In addition, current correction schemes going beyond RPA and directions of further development will be discussed.Comment: 25 pages, 11 figures, published online in J. Mater. Sci. (2012

    A quantum-chemical study of the binding ability of βXaaHisGlyHis towards copper(II) ion

    Get PDF
    The present study analyzed binding of Cu2+ to tetrapeptides in water solution at several levels of theoretical approximation. The methods used to study the energetic and structural properties of the complexes in question include semiempirical hamiltonians, density functional theory as well as ab initio approaches including electron correlation effects. In order to shed light on the character of interactions between Cu2+ and peptides, which are expected to be mainly electrostatic in nature, decomposition of interaction energy into physically meaningful components was applied

    The dipolar endofullerene HF@C60

    Get PDF
    The cavity inside fullerenes provides a unique environment for the study of isolated atoms and molecules. We report encapsulation of hydrogen fluoride inside C60 using molecular surgery to give the endohedral fullerene HF@C60. The key synthetic step is the closure of the open fullerene cage while minimizing escape of HF. The encapsulated HF molecule moves freely inside the cage and exhibits quantization of its translational and rotational degrees of freedom, as revealed by inelastic neutron scattering and infrared spectroscopy. The rotational and vibrational constants of the encapsulated HF molecules were found to be redshifted relative to free HF. The NMR spectra display a large 1H-19F J coupling typical of an isolated species. The dipole moment of HF@C60 was estimated from the temperature-dependence of the dielectric constant at cryogenic temperatures and showed that the cage shields around 75% of the HF dipole

    An ab initio and AIM investigation into the hydration of 2-thioxanthine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hydration is a universal phenomenon in nature. The interactions between biomolecules and water of hydration play a pivotal role in molecular biology. 2-Thioxanthine (2TX), a thio-modified nucleic acid base, is of significant interest as a DNA inhibitor yet its interactions with hydration water have not been investigated either computationally or experimentally. Here in, we reported an <it>ab initio </it>study of the hydration of 2TX, revealing water can form seven hydrated complexes.</p> <p>Results</p> <p>Hydrogen-bond (H-bond) interactions in 1:1 complexes of 2TX with water are studied at the MP2/6-311G(d, p) and B3LYP/6-311G(d, p) levels. Seven 2TX<sup>...</sup>H<sub>2</sub>O hydrogen bonded complexes have been theoretically identified and reported for the first time. The proton affinities (PAs) of the O, S, and N atoms and deprotonantion enthalpies (DPEs) of different N-H bonds in 2TX are calculated, factors surrounding why the seven complexes have different hydrogen bond energies are discussed. The theoretical infrared and NMR spectra of hydrated 2TX complexes are reported to probe the characteristics of the proposed H-bonds. An improper blue-shifting H-bond with a shortened C-H bond was found in one case. NBO and AIM analysis were carried out to explain the formation of improper blue-shifting H-bonds, and the H-bonding characteristics are discussed.</p> <p>Conclusion</p> <p>2TX can interact with water by five different H-bonding regimes, N-H<sup>...</sup>O, O-H<sup>...</sup>N, O-H<sup>...</sup>O, O-H<sup>...</sup>S and C-H<sup>...</sup>O, all of which are medium strength hydrogen bonds. The most stable H-bond complex has a closed structure with two hydrogen bonds (N(7)-H<sup>...</sup>O and O-H<sup>...</sup>O), whereas the least stable one has an open structure with one H-bond. The interaction energies of the studied complexes are correlated to the PA and DPE involved in H-bond formation. After formation of H-bonds, the calculated IR and NMR spectra of the 2TX-water complexes change greatly, which serves to identify the hydration of 2TX.</p
    corecore